Welcome!

Python Authors: Matt Davis, AppDynamics Blog, Pat Romanski, Donald Meyer, Liz McMillan

Related Topics: @CloudExpo, @DXWorldExpo, @ThingsExpo

@CloudExpo: Blog Post

The #IoT and #Analytics | @ThingsExpo #BigData #BI #AI #DX #MachineLearning

The Internet of Things promises to change everything by enabling “smart” environments and smart products

The Internet of Things (IoT) and Analytics at The Edge

The Internet of Things (IoT) promises to change everything by enabling “smart” environments (homes, cities, hospitals, schools, stores, etc.) and smart products (cars, trucks, airplanes, trains, wind turbines, lawnmowers, etc.). I recently wrote about the importance of moving beyond “connected” to “smart” in a blog titled “Internet of Things: Connected Does Not Equal Smart”. The article discusses the importance of moving beyond just collecting the data, to transitioning to leveraging this new wealth of IoT data to improve the decisions that these smart environments and products need to make: to help these environments and products to self-monitor, self-diagnose and eventually, self-direct.

But one of the key concepts in enabling this transition from connected to smart is the ability to perform “analytics at the edge.” Shawn Rogers, Chief Research Officer at Dell Statistica, had the following quote in an article in Information Management titled “Will the Citizen Data Scientist Inherit the World?”:

“Organizations are fast coming to the realization that IoT implementations are only going to become more vast and more pervasive, and that as that happens, the traditional analytic model of pulling all data in to a centralized source such as a data warehouse or analytic sandbox is going to make less and less sense.

So, most of the conversations I’m having around IoT analytics today revolve around looking at how companies can flip that model on its head and figure out ways to push the analytics out to the edge. If you can run analytics at the edge, you not only can eliminate the time, bandwidth and expense required to transport the data, but you make it possible to take immediate action in response to the insight. You speed up and simplify the analytic process in a way that’s never been done before.”

So I asked Shawn and his boss John Thompson, General Manager of Advanced Analytics at Dell, to help me understand what exactly they mean by “analytics at the edge.” It really boils down to these questions:

  • Are we really developing analytics at the edge?
  • If not, then what sorts of analytics are we performing at the edge?
  • Where are the analytic models actually being built?
  • And finally, what the heck does “at the edge” really mean?
  • So let’s actually start with that last question: What does “at the edge” really mean?

Question #1: What Is “At The Edge”?
“At the edge” refers to the multitude of devices or sensors that are scattered across any network or embedded throughout a product (car, jet engine, CT Scan) that is generating data about the operations and performance of that specific device or sensor.

For example, the current Airbus A350 model has close to 6,000 sensors and generates 2.5 Tb of data per day, while an even newer model – expected to be available in 2020 – will capture more than triple that amount! It is becoming more and more common for everyday common products to have hundreds if not thousands of embedded sensors that are generating readings every couple of seconds on the operations and performance of that particular product (see Figure 1).

Figure 1: Sensors at the Edge

But collecting these huge and real-time volumes of data doesn’t do anything to directly create business advantage. It is what you do with that data that drives the business value, which brings us to…

Question #2: Are We Really Developing Analytics “At The Edge”?
Are we really “performing analytics” (collecting the data, storing the data, preparing the data, running analytic algorithms, validating the analytic goodness of fit and then acting on the results) at the edges, or are we just “executing the analytic models” at the edges? It’s one thing to “execute the analytic models” (e.g., scores, rules, recommendations) at the edges, but something entirely different to actually “perform analytics” at the edges.

Per Shawn and John, “We can deliver analytic models to any end point. We can execute the analytic models in any environment – large or small. We can execute all the steps in performing analytics in a wide range of environments, but there are limits at the edge. The limits are on the robustness of the environment (i.e. cannot deliver an executable to an environment that does not have the memory or processing power to store it or execute it. We cannot change the laws of physics…;-).)”

Question #3: What Sorts Of Analytics Are We Performing At The Edge?
In our airplane example with 6,000 sensors on the plane generating over 2.5 Tb of data per day, how are we performing the analytics at the end?

Per John and Shawn, if the jet engine has a place to house a Java Virtual Machine (JVM) and an analytic model (i.e., lightweight rules based model), then we can execute the model on the engine itself. If the model streams the data to a network, we can execute the analytic model on a gateway, or intermediate server (see Figure 2).

Figure 2: Executing Analytic Models at The Edge

Think of the network as having concentric rings. Each ring can have many servers. Each server can do either – either executing an analytic model or building the analytic models. Now think of many network networks with concentric rings that interlock at various intersections. Analytics can be at any or all levels including at the core, in a data center or in the cloud.

Per Shawn, “By working in tandem with Dell Boomi, we’ve given users the ability to deploy JVM’s with the analytic models on any edge device or gateway anywhere on the network or device. This edge scoring capability enables organizations to address nearly any IoT analytics use case by executing the analytic models at the edge of the network where data is being created.”

Question #4: Where Are The Analytic Models Actually Being Built?
Okay, so we “execute” the pre-built modes at the edge, but we actually build (test, refine, test, refine) the analytic models by bringing the detailed sensor data back to a central data and analytics environment (a.k.a. the Data Lake). Figure 3, courtesy of Joel Dodd of Pivotal, shows the data flow and the supporting analytics execution.

Figure 3: “At the Edge” Analytic Model Execution

Final point, even if you are doing all the sensor/IoT analysis at the edges, you are likely still going to want to bring the raw IoT data back into the data lake for more extensive analysis in order to house the detailed IoT history. For example, we have major economic cycles every 4 to 7 years. You might want to quantify the impact of these economic changes on your network demand and performance. That would eventually require 8 to 14 years of data. And that’s why you are going to want a data lake as the foundation of the transition from a “connected” IoT world to a “smart” IoT world.

The post The Internet of Things (IoT) and Analytics at The Edge appeared first on InFocus.

Read the original blog entry...

More Stories By William Schmarzo

Bill Schmarzo, author of “Big Data: Understanding How Data Powers Big Business” and “Big Data MBA: Driving Business Strategies with Data Science”, is responsible for setting strategy and defining the Big Data service offerings for Dell EMC’s Big Data Practice.

As a CTO within Dell EMC’s 2,000+ person consulting organization, he works with organizations to identify where and how to start their big data journeys. He’s written white papers, is an avid blogger and is a frequent speaker on the use of Big Data and data science to power an organization’s key business initiatives. He is a University of San Francisco School of Management (SOM) Executive Fellow where he teaches the “Big Data MBA” course. Bill also just completed a research paper on “Determining The Economic Value of Data”. Onalytica recently ranked Bill as #4 Big Data Influencer worldwide.

Bill has over three decades of experience in data warehousing, BI and analytics. Bill authored the Vision Workshop methodology that links an organization’s strategic business initiatives with their supporting data and analytic requirements. Bill serves on the City of San Jose’s Technology Innovation Board, and on the faculties of The Data Warehouse Institute and Strata.

Previously, Bill was vice president of Analytics at Yahoo where he was responsible for the development of Yahoo’s Advertiser and Website analytics products, including the delivery of “actionable insights” through a holistic user experience. Before that, Bill oversaw the Analytic Applications business unit at Business Objects, including the development, marketing and sales of their industry-defining analytic applications.

Bill holds a Masters Business Administration from University of Iowa and a Bachelor of Science degree in Mathematics, Computer Science and Business Administration from Coe College.

@ThingsExpo Stories
IoT is rapidly becoming mainstream as more and more investments are made into the platforms and technology. As this movement continues to expand and gain momentum it creates a massive wall of noise that can be difficult to sift through. Unfortunately, this inevitably makes IoT less approachable for people to get started with and can hamper efforts to integrate this key technology into your own portfolio. There are so many connected products already in place today with many hundreds more on the h...
Here are the Top 20 Twitter Influencers of the month as determined by the Kcore algorithm, in a range of current topics of interest from #IoT to #DeepLearning. To run a real-time search of a given term in our website and see the current top influencers, click on the topic name. Among the top 20 IoT influencers, ThingsEXPO ranked #14 and CloudEXPO ranked #17.
Join IBM November 1 at 21st Cloud Expo at the Santa Clara Convention Center in Santa Clara, CA, and learn how IBM Watson can bring cognitive services and AI to intelligent, unmanned systems. Cognitive analysis impacts today’s systems with unparalleled ability that were previously available only to manned, back-end operations. Thanks to cloud processing, IBM Watson can bring cognitive services and AI to intelligent, unmanned systems. Imagine a robot vacuum that becomes your personal assistant tha...
As data explodes in quantity, importance and from new sources, the need for managing and protecting data residing across physical, virtual, and cloud environments grow with it. Managing data includes protecting it, indexing and classifying it for true, long-term management, compliance and E-Discovery. Commvault can ensure this with a single pane of glass solution – whether in a private cloud, a Service Provider delivered public cloud or a hybrid cloud environment – across the heterogeneous enter...
DXWorldEXPO LLC, the producer of the world's most influential technology conferences and trade shows has announced the 22nd International CloudEXPO | DXWorldEXPO "Early Bird Registration" is now open. Register for Full Conference "Gold Pass" ▸ Here (Expo Hall ▸ Here)
The Jevons Paradox suggests that when technological advances increase efficiency of a resource, it results in an overall increase in consumption. Writing on the increased use of coal as a result of technological improvements, 19th-century economist William Stanley Jevons found that these improvements led to the development of new ways to utilize coal. In his session at 19th Cloud Expo, Mark Thiele, Chief Strategy Officer for Apcera, compared the Jevons Paradox to modern-day enterprise IT, examin...
Major trends and emerging technologies – from virtual reality and IoT, to Big Data and algorithms – are helping organizations innovate in the digital era. However, to create real business value, IT must think beyond the ‘what’ of digital transformation to the ‘how’ to harness emerging trends, innovation and disruption. Architecture is the key that underpins and ties all these efforts together. In the digital age, it’s important to invest in architecture, extend the enterprise footprint to the cl...
DXWorldEXPO LLC announced today that All in Mobile, a mobile app development company from Poland, will exhibit at the 22nd International CloudEXPO | DXWorldEXPO. All In Mobile is a mobile app development company from Poland. Since 2014, they maintain passion for developing mobile applications for enterprises and startups worldwide.
DXWorldEXPO LLC announced today that ICC-USA, a computer systems integrator and server manufacturing company focused on developing products and product appliances, will exhibit at the 22nd International CloudEXPO | DXWorldEXPO. DXWordEXPO New York 2018, colocated with CloudEXPO New York 2018 will be held November 11-13, 2018, in New York City. ICC is a computer systems integrator and server manufacturing company focused on developing products and product appliances to meet a wide range of ...
In an era of historic innovation fueled by unprecedented access to data and technology, the low cost and risk of entering new markets has leveled the playing field for business. Today, any ambitious innovator can easily introduce a new application or product that can reinvent business models and transform the client experience. In their Day 2 Keynote at 19th Cloud Expo, Mercer Rowe, IBM Vice President of Strategic Alliances, and Raejeanne Skillern, Intel Vice President of Data Center Group and ...
"We are a well-established player in the application life cycle management market and we also have a very strong version control product," stated Flint Brenton, CEO of CollabNet,, in this SYS-CON.tv interview at 18th Cloud Expo at the Javits Center in New York City, NY.
In his session at @ThingsExpo, Arvind Radhakrishnen discussed how IoT offers new business models in banking and financial services organizations with the capability to revolutionize products, payments, channels, business processes and asset management built on strong architectural foundation. The following topics were covered: How IoT stands to impact various business parameters including customer experience, cost and risk management within BFS organizations.
While the focus and objectives of IoT initiatives are many and diverse, they all share a few common attributes, and one of those is the network. Commonly, that network includes the Internet, over which there isn't any real control for performance and availability. Or is there? The current state of the art for Big Data analytics, as applied to network telemetry, offers new opportunities for improving and assuring operational integrity. In his session at @ThingsExpo, Jim Frey, Vice President of S...
With the introduction of IoT and Smart Living in every aspect of our lives, one question has become relevant: What are the security implications? To answer this, first we have to look and explore the security models of the technologies that IoT is founded upon. In his session at @ThingsExpo, Nevi Kaja, a Research Engineer at Ford Motor Company, discussed some of the security challenges of the IoT infrastructure and related how these aspects impact Smart Living. The material was delivered interac...
Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settlement products to hedge funds and investment banks. After, he co-founded a revenue cycle management company where he learned about Bitcoin and eventually Ethereal. Andrew's role at ConsenSys Enterprise is a mul...
Amazon started as an online bookseller 20 years ago. Since then, it has evolved into a technology juggernaut that has disrupted multiple markets and industries and touches many aspects of our lives. It is a relentless technology and business model innovator driving disruption throughout numerous ecosystems. Amazon’s AWS revenues alone are approaching $16B a year making it one of the largest IT companies in the world. With dominant offerings in Cloud, IoT, eCommerce, Big Data, AI, Digital Assista...
The Founder of NostaLab and a member of the Google Health Advisory Board, John is a unique combination of strategic thinker, marketer and entrepreneur. His career was built on the "science of advertising" combining strategy, creativity and marketing for industry-leading results. Combined with his ability to communicate complicated scientific concepts in a way that consumers and scientists alike can appreciate, John is a sought-after speaker for conferences on the forefront of healthcare science,...
In his session at Cloud Expo, Alan Winters, U.S. Head of Business Development at MobiDev, presented a success story of an entrepreneur who has both suffered through and benefited from offshore development across multiple businesses: The smart choice, or how to select the right offshore development partner Warning signs, or how to minimize chances of making the wrong choice Collaboration, or how to establish the most effective work processes Budget control, or how to maximize project result...
In his keynote at 19th Cloud Expo, Sheng Liang, co-founder and CEO of Rancher Labs, discussed the technological advances and new business opportunities created by the rapid adoption of containers. With the success of Amazon Web Services (AWS) and various open source technologies used to build private clouds, cloud computing has become an essential component of IT strategy. However, users continue to face challenges in implementing clouds, as older technologies evolve and newer ones like Docker c...
When shopping for a new data processing platform for IoT solutions, many development teams want to be able to test-drive options before making a choice. Yet when evaluating an IoT solution, it’s simply not feasible to do so at scale with physical devices. Building a sensor simulator is the next best choice; however, generating a realistic simulation at very high TPS with ease of configurability is a formidable challenge. When dealing with multiple application or transport protocols, you would be...