Welcome!

Python Authors: Pat Romanski, Matt Davis, AppDynamics Blog, Donald Meyer, Liz McMillan

Related Topics: @DevOpsSummit, Microservices Expo, @CloudExpo, Python

@DevOpsSummit: Article

Microservices and Python | @DevOpsSummit #DevOps #IoT #Microservices

Microservices, an app architecture style that leans mostly on independent, self-contained programs, are becoming the new norm

How Microservices Are Transforming Python Development
By Omed Habib

The goal of any tech business worth its salt is to provide the best product or service to its clients in the most efficient and cost-effective way possible. This is just as true in the development of software products as it is in other product design services.

Microservices, an app architecture style that leans mostly on independent, self-contained programs, are quickly becoming the new norm, so to speak. With this change comes a declining reliance on older SOAs like COBRA, a push toward more sustainable API approaches and fewer monolithic development and deployment models.

So why are microservices suddenly at the forefront of the software architecture conversation? They are changing how Python-based developers are getting things done in a way that’s far more efficient than before, and in more ways than one.

The Differences Between Microservices and SOAs
Diving deeper into the
differences between microservices and SOAs, you have to remember that, at their core, microservices are essentially an offshoot of SOAs, although they both act and deploy independently from each other.

SOAs also follow four major tenets during the development and deployment phases:

  • Their boundaries are inherently explicit.

  • They provide autonomous services.

  • Those services share both schema and contract but not class.

  • The compatibility of those services is policy-based.

Once you’ve established these distinctions, you can then make a far more accurate comparison between microservices and SOAs in that SOAs are architectural patterns that use their respective components to provide services to other components, within or without the same application. In microservices, only services independent of the application in question deploy those same components.

Although microservices are not a novel or inherently “new” architecture style, as much of their roots derive from the founding design principles found in Unix language, there are still several implications of an increase in productivity and innovation if more developers use microservices.

The Evolution of Microservices
Overall, the timeline for the evolution of Python-based apps, from monolithic to microservices, has been a relatively short one. On top of that, much of the evolution was born out of a necessity for forward progression and increased ease among developers.

It is widely accepted that microservices have more substance attached to them because they’ve done away with bulky XML-based schemas that large corporations are known for using in favor of slimmer applications that rely far less on bloat. Ultimately, microservices have become more common over time because they:

  • Can deploy independently of the core application

  • Can function properly while remaining separate from dependent responsibilities

  • Possess strong backward compatibility, making them less prone to breakage

Development team advantages include:

  • Allow for the decentralization of data management so teams and subteams can be responsible for maintenance on a far more granular level

  • Enable the use of infrastructure automation, from testing to deployment, without much need for human supervision

  • Faster ramp-up time for new team members means they can learn processes faster by focusing on smaller chunks of data.

There are still widely accepted, monolithic-first approaches within the development phase that development teams can break down into SOAs and, further still, into microservices. Some of the more successful applications still employ monolith-first patterns but in conjunction with the use of microservices and even nano-services.

A Word (or Two) on Nano Services
There’s plenty of support (and animosity) toward just how deep developers should go down the rabbit hole concerning
the development and use of nano-services. Just as you’d think, nano-services are simply components that designers have drilled down to an even more granular level than their microservices predecessors.

For some, it is a virtual splitting of hairs while, for others, it is yet another landscape that we have yet to understand fully and, therefore, properly utilize. Both sides can agree, however, that the status quo will likely share neither sentiment anytime soon.

Advantages of Microservices
While developers and the enterprise-level businesses they work for tend to flock toward the main codebase approach of a monolithic architecture for its benefits, there are also some pros that come with building a software product incrementally.

Microservices come with a unique set of advantages, some briefly mentioned earlier, that allow developers to create building blocks that they can then retrofit into an existing codebase as needed. Other significant advantages include:

  • There’s ability to change the implementation of a public API, without breaking it, the moment you define it and others start using it

  • The services are so small that they make maintenance from one developer to another easier to facilitate and understand.

  • There are no development language limitations, so you can use what’s best for you and your team.

  • It is easier to upgrade systems one microservice at a time than it is to upgrade a monolithic system.

  • Cross-implementation compatibility allows you to prototype in one language and re-implement in another.

  • Regardless of the size of your operation, if most of your product builds require more detailed components and adaptive development, then microservices are a better approach.

Current Microservices Implementations
Arguably, the
go-to implementation for most microservices today, Python-based or otherwise, is Docker. Aside from increased agility and control, many of today’s developers are embracing the ability to work remotely, so naturally any implementation that allows for more portability than the competition is greatly appreciated by the developer community.

Other popular implementations include but are not limited to:

  • Flask

  • MicroService4Net

  • Microsoft Service Fabric

  • NetKernel

  • Nirmata

  • Spring Cloud

Currently, the trend toward component development and product compartmentalization will continue as the need for customizable applications, and modular design becomes more prevalent.

Why Python?
Most Python developers who implement microservices during development likely use the
RESTful approach to creating an API, which is an all-inclusive way of utilizing available Web protocols and software to remotely search and manipulate objects.

Reverse engineered by Dr. Roy Fielding in 2000, RESTful microservices has a basic premise that follows three distinct canons:

  • You are required to use any provided links or other resources, making your application’s API browseable.

  • You are expected to recognize the uniform interface of HTTP.

  • You are expected to use each of the verbs (e.g., get, post, put, delete) without violating their own semantics.

Python’s Development Advantages
As mentioned before, you can implement and re-implement microservices across virtually every language, but with Python, there are several advantages that make working within it straightforward and convenient. They include:

  • So long as the API is formatted correctly, prototyping is easier and quicker than in other languages.

  • Instead of having to rely on full-fledged installations of implementations, like Django, you can use lighter installs that are just as powerful, like Flask and others.

  • Looking toward the future, it is a fantastic opportunity to start coding in Python 3, if you do not already.

  • Backward compatibility with legacy languages, like PHP and ASP, allows you to build Web service front ends to a host of microservices.

Furthermore, microservices help to optimize the performance of Python-developed applications two-fold:

  • They become easier to monitor, due to the fact apps are now broken up into components.

  • Performance issues become easier to identify, allowing for more granular diagnoses of flawed, bottlenecked or buggy services.

Moreover, for a design pattern that’s used by the likes of Google, Amazon, Microsoft, Netflix, Uber and more, there are no signs of this architecture going anywhere any time soon.

The Future of Microservices
Although it is easy to agree that the future of software architecture development is moving in the direction of increased modularity and microservices, that does not mean it will not come with its fair share of complications. This is doubly true for larger companies that have created much of their codebase with a monolithic approach in mind.

There are plenty of reasons why an industry-wide shift to microservices might fail, but there are a few challenges that developers and software architects should be mindful of in the coming years:

  • Complete software compatibility: With componentization, much of software’s success depends on its compatibility with its respective components and vice versa. Moving code from service to service becomes difficult, and a development team would need to orchestrate complete coordination.

  • Clean composition: If microservice components do not compose code cleanly, you are simply over complicating the inner workings of connections between their respective components. This shifts unnecessary stress and complexities to an area that’s harder to control.

  • Evolutionary design considerations: When you decide to work in an environment where you can break down components, you are faced with the challenge of figuring out how and where to break them down. It calls for making the risky decision of knowing what you can scrap or save from version 1.0 to version 5.1 and beyond far ahead of time.

  • Required skill sets: Not all teams are created equal. This means that because one team may have the skills required to adopt new techniques does not mean your team will. Foisting an ill-equipped team into uncharted territory could prove disastrous for your entire infrastructure.

Although the distinctions between SOAs and microservices might seem a bit minute, each one still has its intended purposes, whether you are using Python or any other development language.

The fact remains that microservices are only going to become more of necessity as development projects require more specific (and complex) functions and harness the interconnectedness that can come with coding for mutually independent services; however, these changes can, and may, come with a unique collection of augmentations and subsequent headaches.

The post How Microservices are Transforming Python Development appeared first on Application Performance Monitoring Blog | AppDynamics.

More Stories By AppDynamics Blog

In high-production environments where release cycles are measured in hours or minutes — not days or weeks — there's little room for mistakes and no room for confusion. Everyone has to understand what's happening, in real time, and have the means to do whatever is necessary to keep applications up and running optimally.

DevOps is a high-stakes world, but done well, it delivers the agility and performance to significantly impact business competitiveness.

IoT & Smart Cities Stories
DXWorldEXPO LLC announced today that "IoT Now" was named media sponsor of CloudEXPO | DXWorldEXPO 2018 New York, which will take place on November 11-13, 2018 in New York City, NY. IoT Now explores the evolving opportunities and challenges facing CSPs, and it passes on some lessons learned from those who have taken the first steps in next-gen IoT services.
Cloud-enabled transformation has evolved from cost saving measure to business innovation strategy -- one that combines the cloud with cognitive capabilities to drive market disruption. Learn how you can achieve the insight and agility you need to gain a competitive advantage. Industry-acclaimed CTO and cloud expert, Shankar Kalyana presents. Only the most exceptional IBMers are appointed with the rare distinction of IBM Fellow, the highest technical honor in the company. Shankar has also receive...
DXWorldEXPO LLC announced today that ICOHOLDER named "Media Sponsor" of Miami Blockchain Event by FinTechEXPO. ICOHOLDER gives detailed information and help the community to invest in the trusty projects. Miami Blockchain Event by FinTechEXPO has opened its Call for Papers. The two-day event will present 20 top Blockchain experts. All speaking inquiries which covers the following information can be submitted by email to inf[email protected] Miami Blockchain Event by FinTechEXPOalso offers sp...
DXWordEXPO New York 2018, colocated with CloudEXPO New York 2018 will be held November 11-13, 2018, in New York City and will bring together Cloud Computing, FinTech and Blockchain, Digital Transformation, Big Data, Internet of Things, DevOps, AI, Machine Learning and WebRTC to one location.
@DevOpsSummit at Cloud Expo, taking place November 12-13 in New York City, NY, is co-located with 22nd international CloudEXPO | first international DXWorldEXPO and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time t...
Headquartered in Plainsboro, NJ, Synametrics Technologies has provided IT professionals and computer systems developers since 1997. Based on the success of their initial product offerings (WinSQL and DeltaCopy), the company continues to create and hone innovative products that help its customers get more from their computer applications, databases and infrastructure. To date, over one million users around the world have chosen Synametrics solutions to help power their accelerated business or per...
When talking IoT we often focus on the devices, the sensors, the hardware itself. The new smart appliances, the new smart or self-driving cars (which are amalgamations of many ‘things'). When we are looking at the world of IoT, we should take a step back, look at the big picture. What value are these devices providing. IoT is not about the devices, its about the data consumed and generated. The devices are tools, mechanisms, conduits. This paper discusses the considerations when dealing with the...
Charles Araujo is an industry analyst, internationally recognized authority on the Digital Enterprise and author of The Quantum Age of IT: Why Everything You Know About IT is About to Change. As Principal Analyst with Intellyx, he writes, speaks and advises organizations on how to navigate through this time of disruption. He is also the founder of The Institute for Digital Transformation and a sought after keynote speaker. He has been a regular contributor to both InformationWeek and CIO Insight...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
Digital Transformation is much more than a buzzword. The radical shift to digital mechanisms for almost every process is evident across all industries and verticals. This is often especially true in financial services, where the legacy environment is many times unable to keep up with the rapidly shifting demands of the consumer. The constant pressure to provide complete, omnichannel delivery of customer-facing solutions to meet both regulatory and customer demands is putting enormous pressure on...