Welcome!

Python Authors: Pat Romanski, Matt Davis, AppDynamics Blog, Donald Meyer, Liz McMillan

Related Topics: @DXWorldExpo, Java IoT, Open Source Cloud, Containers Expo Blog, Server Monitoring, @CloudExpo

@DXWorldExpo: Blog Feed Post

Big Data – Storage Mediums and Data Structures

Big Data presents something of a storage dilemma. There is no one data store to rule them all.

My working title was Big Data, Storage Dilemma.

They say dilemma. I say dilemna. I'm serious. I spell it dilemna.

Big Data presents something of a storage dilemma. There is no one data store to rule them all.

Should different data structures be persisted to different storage mediums?

Storage Medium
Identifying the appropriate medium is a function of performance, cost, and capacity.

Random Access Memory
It's fast. Very. It's expense. Very.

If we are configuring an HP DL980 G7 server, it will cost $3,672 for 128GB of memory with 8x 16GB modules or $9,996 for 128GB of memory with 4x 32GB modules. That is $28-78 / GB.

We can configure an HP DL980 G7 server with up to 4TB of memory.

Solid State Drive
It's not as fast or as expensive as random access memory. It's faster than a hard disk drive. A lot faster. It's more expensive than a hard disk drive. A lot more expensive.

If we are configuring an HP DL980 G7 server, it will cost $4,199 for a 400GB SAS MLC drive or $7,419 for a 400GB SAS SLC drive. That is $10-18 / GB. It's a performance / size trade-off. While SLC drives often perform better, MLC drives are often available in larger sizes. Further, the read / write performance is either symmetric or asymmetric.

That, and SLC drives often have greater endurance.


Sequential
Read
(MB/s)
Sequential
Write
(MB/s)
Random
Read
(IOPS)
Random
Write
(IOPS)
Intel 520 (480GB) 550 520 50,000 50,000
Intel 520 (240GB) 550 520 50,000 80,000
Intel DC S3700 500 460 75,000 36,000

The performance of solid state drives can vary:

  • consumer / enterprise
  • MLC / eMLC / SLC
  • SATA / SAS / PCIe

The capacity of enterprise solid state drives is often less than that of enterprise hard disk drives (4TB). However, the capacity of PCIe drives such as the Fusion-io ioDrive Octal (5.12TB / 10.24TB) is greater than that of enterprise hard disk drives (4TB). In addition, the performance of PCIe drives is greater than that of SAS or SATA drives.


Sequential
Read
(MB/s)
Sequential
Write
(MB/s)
Random
Read
(IOPS)
Random
Write
(IOPS)
Intel 910 (800GB) 2,000 1,000 180,000 75,000

Hard Disk Drive

It may not be fast, but it is inexpensive.

If we are configuring an HP DL980 G7 server, it will cost $309 for a 300GB 10K drive or $649 for a 300GB 15K drive. That is $1-2 / GB. It's a performance / size trade-off. While a 15K drive will perform better than a 10K drive, it will often have less capacity. The sequential read / write performance of hard disk drives is often between 150-200MB/s. As such, a RAID configuration may be a cost effective alternative to a single solid state drive for sequential read / write access.

The capacity of enterprise hard disk drives (4TB) is often greater than that of enterprise solid state drives.

Data Structure
Hash Table

JBoss Data Grid is an in-memory data grid with the data stored in a hash table. However, JBoss Data Grid supports persistence via write-behind or write-through. For all intents and purposes (e.g. map / reduce), all of the data should fit in memory.

Access

  • Random Reads, Random Writes

Riak is a key / value store. If persistence has been configured with Bitcast, the data is stored in a log structured hash table. An in-memory hash table contains the key / value pointers. The value is a pointer to the data. As such, all of the key / value pointers must fit in memory. The data is persisted via append only log files.

Access

  • Complex Index in Memory
  • Random Reads, Sequential Writes

Point queries perform well in hash tables. Range queries do not. Though there is always map / reduce.

B-Tree
MongoDB is a document database with the data stored in a B-Tree. The data is persisted via memory mapped files.

Access

  • Partial Index (Internal Nodes) in Memory
  • Random Reads, Sequential Reads, Random Writes

CouchDB is a document database with the data stored in a B+Tree. The data is persisted via append only log files.

Access

  • Partial Index in Memory
  • Random Reads, Sequential Reads, Sequential Writes

In a B+ Tree, the data is only stored in the leaf nodes. In a B-Tree, the data is stored in both the internal nodes and the leaf nodes. The advantage of a B+ Tree is that the leaf nodes are linked. As a result, range queries perform better with a B+ Tree. However, point queries perform better with a B-Tree.

CouchDB has implemented an append only B+ Tree. An alternative is the copy-on-write (CoW) B+ Tree. A write optimization for a B-Tree is buffering. First, the data written to an internal buffer in an internal node. Second, the buffer is flushed to a leaf node. As a result, random writes are turned in to sequential writes. The cost of random writes is thus amortized.  However, I am not aware of any open source data stores that have implemented a CoW B+ Tree or have implemented buffering with a B-Tree.

Range queries perform well with a B/B+ Tree. Point queries, not as well as hash tables.

Log Structured Merge Tree
Apache HBase and Apache Cassandra are both column oriented data stores, and they have both store data in an LSM-Tree. Apache HBase has implemented a cache oblivious lookahead array (COLA). Apache Cassandra has implemented a sorted array merge tree (SAMT).

In both implementations, a write is first written to a write-ahead log. Next, it is written to a memtable. A memtable is an in-memory sorted string table (SSTable). Later, the memtable is flushed and persisted as an SSTable. As result, random writes are turned in to sequential writes. However, a point query with an LSM-Tree may require multiple random reads.

Apache HBase implemented a single-level index with HFile version 1. However, because every index was cached, it resulted in high memory usage.

Apache HBase implemented a multi-level index a la a B+ Tree with HFile (SSTable) version 2. The SSTable contains a root index, a root index with leaf indexes, or a root index with an intermediate index and leaf indexes. The root index is stored in memory. The intermediate and leaf indexes may be stored in the block cache. In addition, the SSTable contains a compound (block level) bloom filter. The bloom filter is used to determine if the data is not in the data block.

Recommendation / Access

  • Partial Index / Bloom Filter in Memory
  • Random Reads, Sequential Reads, Sequential Writes

A read optimization for an LSM-Tree is fractional cascading. The idea is that each level contains both data and pointers to data in the next level. However, I am not aware of any open source data stores that have implemented fractional cascading.

I like the idea of a hybrid / tiered storage solution for an LSM-Tree implementation with the first level in memory, second level on solid state drives, and third level on hard disk drives. I've seen this solution described in academia, but I am not aware of any open source implementations.

Conclusion
I find it interesting that key / value stores often store data in a hash table, that document stores often store data in a B+/B-Tree, and that column oriented stores often store data in an LSM-Tree. Perhaps it is because key / value stores focus on the performance of point queries, document stores support secondary indexes (MongoDB) / views  (CouchDB), and column oriented stores support range queries. Perhaps it because document stores were not created with distribution (shards / partitions) in mind and thus assume that the complete index can not be stored in memory.

Notes
I found this paper to be very helpful in examining data structures as it covers most of the ones highlighted in this post:

Efficient, Scalable, and Versatile Application and System Transaction Management for Direct Storage Layers (link)

Read the original blog entry...

More Stories By Daniel Thompson

I curate the content on this page, but the credit goes to my talented colleagues for the posts that you see here. Much of what you read on this page is the work of friends at How to JBoss, and I encourage you to drop by the site at http://www.howtojboss.com for some of the best JBoss technical and non-technical content for developers, architects and technology executives on the Web.

IoT & Smart Cities Stories
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
As IoT continues to increase momentum, so does the associated risk. Secure Device Lifecycle Management (DLM) is ranked as one of the most important technology areas of IoT. Driving this trend is the realization that secure support for IoT devices provides companies the ability to deliver high-quality, reliable, secure offerings faster, create new revenue streams, and reduce support costs, all while building a competitive advantage in their markets. In this session, we will use customer use cases...