Welcome!

Python Authors: Ignacio M. Llorente, Carmen Gonzalez, Elizabeth White, John Wetherill, Trevor Parsons

News Feed Item

Sensing the Future: Ford Issues Predictions for Next Wave of Automotive Electronics Innovation

DEARBORN, Mich., Dec. 21, 2012 /PRNewswire/ --

  • Ford vehicles including the all-new 2013 Fusion are increasingly equipped with sensors that assist drivers with increased awareness
  • Sensor fusion, machine learning, and "big data" among the predictions for the next wave of Ford research and development

State-of-the-art sensing, computing and communications systems are not only quickly changing consumer expectations in people's everyday lives, but are driving innovation in the automotive industry at an incredible pace in preparation for the future.

"Ford was founded on the innovative spirit of Henry Ford, and the opportunity today to reinvent the driving experience excites us just as it probably would have him," said Paul Mascarenas, vice president and chief technical officer of Ford. "Technology is enabling Ford to bring a new level of awareness and intelligence that will dramatically enhance our customers' time behind the wheel."

As CTO, Mascarenas has been leading the team researching and developing new technologies for Ford vehicles, particularly in the area of driver assistance and mobile device connectivity.

"The new Fusion sedan demonstrates how we're making the car smarter using attainable and affordable technology and thus helping create a better driver," continues Mascarenas. "Fusion features an unprecedented level of sensors for its driver assist technologies, machine learning techniques to deliver more electric-only driving on the hybrids, and innovative graphical interfaces to help coach drivers to be as fuel efficient as possible."

With more than 145 actuators, 4716 signals, and 74 sensors including radar, sonar, cameras, accelerometers, temperature and even rain sensors, the 2013 Fusion can monitor the perimeter around the car and see into places that are not readily visible from the driver's seat. These sensors produce more than 25 gigabytes of data per hour which is analyzed by more than 70 on-board computers. The actuators combined with signal information from the driver assist sensors can alert the driver to potential dangers, and actively assist with parking and lane keeping.

"So far we've just scratched the surface of what is possible," said Mascarenas. "In the Fusion, we have sensors and actuators that act independently as part of the assist features. The next phase, currently in research, involves sensor fusion, where engineers learn how to more comprehensively characterize the environment by blending multiple signals, and add externally available information through cloud connectivity."

According to Mascarenas' predictions, top areas for car technology innovation in the coming years will include:

  • "Big data" analysis and intelligent decision making: Ford is researching the use of real-time sensor data – radar and camera-based – that can help evaluate external factors affecting driver attention, such as traffic congestion, and thus limit potential distractions such as an incoming phone call
  • Upgradeable, customizable hardware: Ford's OpenXC research platform looks at the potential for open-source, community-driven innovation of plug-and-play hardware modules that provide infinite opportunities for rapid customization
  • Seamless integration across cloud ecosystems: The success of Ford SYNC® has been linked to its open, agnostic platform strategy that has allowed for adoption and compatibility with the burgeoning mobile ecosystem; the next step is to do the same for the consumer shift toward cloud-based services
  • Advanced machine learning: The new Fusion and C-MAX Energi plug-in hybrids utilize EV+, a feature that learns the typical locations of charging, such as home and office, and then automatically maximizes electric-only driving mode when nearing those locations
  • Biometrics: Ford is researching biometric sensors, such as those embedded in a car seat, to measure stress levels for a more personalized response from driver assist technologies, because skill levels – and thus stress – can vary in certain situations
  • Prediction: Ford researchers are looking at ways to predict driver behavior, such as a driver's destination based on prior history, to help optimize and configure vehicle controls for improved performance such as better energy management
  • Rapid data authentication: Ford sees significant potential in vehicle-to-vehicle communications and is actively researching the technology globally, including advanced Wi-Fi® with rapid authentication capability so that cars can exchange information quickly and securely, helping drivers avoid potential collisions

"All of these areas of research are well within our reach," concludes Mascarenas. "The key to readiness and implementation in Ford vehicles is ensuring the customer experience of these technology features trumps the technology itself." 

About Ford Motor Company
Ford Motor Company (NYSE: F), a global automotive industry leader based in Dearborn, Mich., manufactures or distributes automobiles across six continents. With about 172,000 employees and 65 plants worldwide, the company's automotive brands include Ford and Lincoln. The company provides financial services through Ford Motor Credit Company. For more information regarding Ford and its products worldwide, please visit http://corporate.ford.com.

 

SOURCE Ford Motor Company

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

@ThingsExpo Stories
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, and physical persons. In the IoT vision, every new "thing" - sensor, actuator, data source, data con...
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.