Welcome!

Python Authors: Ignacio M. Llorente, Carmen Gonzalez, Elizabeth White, John Wetherill, Trevor Parsons

News Feed Item

Fujitsu Develops World's First Stream Aggregation Technology to Rapidly Process Both Historical Data and Incoming Data

Kawasaki, Japan, Nov 19, 2012 - (JCN Newswire) - Fujitsu Laboratories Limited announced development of the world's first stream aggregation technology able to rapidly process both stored historical data and incoming streams of new data in a big data context.

The nature of big data requires that enormous volumes of data be processed at a high speed. When data is aggregated, longer aggregation times result in larger data volumes to be processed. This means computation times lengthen, which causes frequent updating operations to become more difficult. This is why improving the frequency of updates when aggregation times are lengthened has so far been challenging. Fujitsu Laboratories has therefore developed a technology that returns computation results quickly and manages snapshot operations, without re-doing computations or re-reading a variety of data types that change over time. As a result, even with high-frequency updating and long aggregation times, data can be processed 100 times faster than before.

This technology promises to improve both large volumes of batch processing and the processing of streaming data. Furthermore, in meteorology, it is now possible to show concentrated downpours in specific areas. As well as the utility gained for future weather forecasting, it may also have uses in new fields that demand the ability to process longitudinal data in real time.

Details of this technology will be announced at a special workshop lecture of the Special Interest Group on Software Interprise Modeling (SWIM) of the Institute of Electronics, Information and Communication Engineers (IEICE) held on Friday, November 30, at the Takanawa campus of Tokai University in Japan.

Background

Many companies are interested in using advanced ICT technology to improve their competitive position by rapidly processing large volumes of data. Some uses are large-scale batch processes performed periodically on transaction data, or processing streaming data in real time based on changing stock prices.

In the data processing of such activities, aggregating computations is essential. In large-volume batch processing, however, there are differences in the aggregation times and update frequency. Typically, large-volume batch processes that emphasize throughput operate on aggregation times lasting weeks or months. Streaming data processes emphasize response, on the other hand, and are in units of seconds or minutes. Update times roughly correspond with these.

Technological Challenges

The emphasis on batch processes and streaming processes is different, and therefore the process needs to be adapted according to application.

1. Large-volume batch processing technology

Large-volume batch processing handles large volumes of historical data, so each round of processing re-reads all data, which creates long delays before results are ready.

2. Conventional stream processing technology

The constant flow of data is held in a buffer - known as a window - and therefore each round of processing does not need to re-read any earlier data. Depending on the type of computation, however, the process does need access to all the data in that window in order to obtain computation results. For this reason, the duration of one round of computations will be proportionate to the window length, which diminishes responsiveness.

When using both historical (stored) and current (realtime streaming) data, with conventional processing methods, it has been difficult to simultaneously lengthen the aggregation intervals and raise the frequency of updates for the reasons outlined above.

Newly Developed Technology

Fujitsu Laboratories has developed a fast stream aggregation technology for long aggregation intervals and frequent updates, based on a combination of the two technologies described below.

1. Rapid pattern matching technology:

This is a technology that efficiently and directly picks out relevant items from an incoming stream of data. The conventional technique begins by analyzing the structure of input data and temporarily accumulating all input data in the memory. Next, it performs an extraction process of the items needed for aggregation to extract data. Structural analysis and item extraction is necessarily a two-step process. This technology is different in that it specifies the positions where items to be extracted will appear based on pattern matching, skipping over unneeded items thereby speeding up the process. Also, because pattern-matching is flexible, as well as using it with fixed-format data (such as CSV data) that conventional techniques use, it can work with other forms of data having recursive or hierarchical structures (such as XML data).

2. Snapshot operation management technology:

This is a technology that quickly returns computation results to deal with a variety of data types that change over time, without re-reading or re-computing data. The conventional technique is to store in memory an incoming stream of data following its time sequence. This technology stores the data even as it performs required computations, such as sorting according to a predefined order. It is always managed based on its computed state (snapshot operation), and therefore never needs to redo computations that involve all the data, including not only sums and averages but also minima, maxima, and medians. This lets it quickly pick out computation results.

Results

The response time for aggregation results when using a window length of 500,000 records was shown to be roughly 100 times faster than the commonly used open-source Complex Event Processing engine. It was also demonstrated that response time does not depend on window length (Figure 3).

This technology is expected to have applications with regard to the utilization of high-precision sensor data. Fujitsu Laboratories conducted verification of the technology using rainfall data generated by XRAIN(1), a project conducted by the Water and Disaster Management Bureau of the Ministry of Land, Infrastructure, Transport and Tourism. In the case of aggregating rainfall volume data collected over several hours from 500,000 locations in the Kansai region of western Japan, every several minutes a window of approximately 100 million records needs to be processed. The test conducted by Fujitsu Laboratories confirmed the technology's ability to execute data aggregation within intervals and no variation in aggregation times, and that the smooth movement of the rainfall area could be replicated, even for such a wide range of data. More than a sudden downpour, the actual volume of rainfall is what is strongly associated with disasters, and now, areas that require vigilance due to concentrated downpours can be readily verified.

Moreover, applications are anticipated for existing batch processing and stream processing. By enhancing the real-time aggregation of sales data, for example, it becomes possible to further strengthen production and inventory management.

Future Plans

Fujitsu plans to incorporate the new technology into its Big Data Platform and Big Data Middleware in fiscal 2013.

(1) Rainfall data generated by XRAIN:Rainfall data generated by the X-band MP Radar Rainfall Data, or XRAIN project, conducted by the Ministry of Land, Infrastructure, Transport and Tourism. XRAIN seeks to maintain extremely localized weather data, capturing rainfall data every 250 meters at one-minute intervals over a wide area.

About Fujitsu Laboratories

Founded in 1968 as a wholly owned subsidiary of Fujitsu Limited, Fujitsu Laboratories Limited is one of the premier research centers in the world. With a global network of laboratories in Japan, China, the United States and Europe, the organization conducts a wide range of basic and applied research in the areas of Next-generation Services, Computer Servers, Networks, Electronic Devices and Advanced Materials. For more information, please see: http://jp.fujitsu.com/labs/en.

About Fujitsu Limited

Fujitsu is the leading Japanese information and communication technology (ICT) company offering a full range of technology products, solutions and services. Over 170,000 Fujitsu people support customers in more than 100 countries. We use our experience and the power of ICT to shape the future of society with our customers. Fujitsu Limited (TSE:6702) reported consolidated revenues of 4.5 trillion yen (US$54 billion) for the fiscal year ended March 31, 2012. For more information, please see www.fujitsu.com.



Source: Fujitsu Limited

Contact:
Fujitsu Limited
Public and Investor Relations
www.fujitsu.com/global/news/contacts/
+81-3-3215-5259

Technical Contacts

Fujitsu Laboratories Ltd.
Software Systems Laboratories
Intelligent Technology Lab
E-mail: [email protected]


Copyright 2012 JCN Newswire. All rights reserved. www.japancorp.net

More Stories By JCN Newswire

Copyright 2008 JCN Newswire. All rights reserved. Republication or redistribution of JCN Newswire content is expressly prohibited without the prior written consent of JCN Newswire. JCN Newswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

@ThingsExpo Stories
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.
SYS-CON Events announced today that Windstream, a leading provider of advanced network and cloud communications, has been named “Silver Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Windstream (Nasdaq: WIN), a FORTUNE 500 and S&P 500 company, is a leading provider of advanced network communications, including cloud computing and managed services, to businesses nationwide. The company also offers broadband, phone and digital TV services to consumers primarily in rural areas.
"There is a natural synchronization between the business models, the IoT is there to support ,” explained Brendan O'Brien, Co-founder and Chief Architect of Aria Systems, in this SYS-CON.tv interview at the 15th International Cloud Expo®, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The major cloud platforms defy a simple, side-by-side analysis. Each of the major IaaS public-cloud platforms offers their own unique strengths and functionality. Options for on-site private cloud are diverse as well, and must be designed and deployed while taking existing legacy architecture and infrastructure into account. Then the reality is that most enterprises are embarking on a hybrid cloud strategy and programs. In this Power Panel at 15th Cloud Expo (http://www.CloudComputingExpo.com), moderated by Ashar Baig, Research Director, Cloud, at Gigaom Research, Nate Gordon, Director of T...